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Synopsis 

The determination of the cubic thermal expansion coefficient of a two-phase particulate is 
presented in this paper. The model described is based on the well-known Kerner’s model and 
takes into account the existence of mesophase, which constitutes a boundary layer between 
inclusions and the matrix in the composite. This layer is assumed as created by the substance 
of matrix during the preparation procedure of the composite, and it includes areas of imper- 
fections around and near the inclusions. The influence of this layer on the effective properties 
of the composite has been proved to be significant. In order to take into consideration the 
influence of mesophase a spherical shell with the average properties of this layer is interposed 
between the spherical inclusion snd the matrix. The evaluation of the average elastic and 
thermoelastic properties and also of the extent of mesophase is succeeded by considering the 
two-term unfolding model, introduced previously, for describing the change of the elastic 
modulus of the mesophase layer of fiber-reinforced and particulate composites. The two-term 
unfolding model was, in this paper, extended to incorporate the mode of variation of the 
thermal expansion coefficient and the bulk modulus in the mesophase. The model was applied 
to a polyurethane rubber filled with particles of sodium chloride, and its predictions were 
found to be in good agreement with the experimental data. 

INTRODUCTION 
The exact determination of stresses and strains in a particulate under 

the influence of external forces is a rather impossible task. However, when 
the volume fraction of the dispersed phase is not too large, an average 
problem can be constructed, for the determination of the average state of 
stress and strain near and inside an inclusion. There are many models 
presenting various average problems and all of them have as function the 
calculation of the effective properties of the composite materials. A usual 
supposition is that the composites may be described adequately by an elastic, 
homogeneous, and isotropic matrix with known moduli, in which inclusions 
of another elastic, homogeneous, and isotropic material are embedded, 
whose moduli are also given. The distribution of the inclusions is also con- 
sidered uniform. 

Hashin1s2 assumed the composite as a collection of small volume elements 
of various sizes and shapes, filling densely the volume of the composite. 
The solution of the problem was achieved by introducing a further condition. 
He also considered the particulates, as conglomerations of spherical inclu- 
sions and spherical shells, surrounding the inclusions, with the properties 
of the matrix. In every volume element the volume fraction of the inclusion 
was equal to the total volume fraction of the dispersed phase in the com- 
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posite. Wang and Kwei3 have used Hashin’s model to calculate the thermal 
expansion coefficients of particulates. The same loading mode, applied to 
the representative volume element (RVE), was considered acting on another 
spherical, homogeneous and isotropic element, having the same size as the 
RVE, but the average properties of the composite and the distribution of 
stresses and displacements in it were used for the calculation of the state 
of stress in the RVE. 

Van der Pod4 and Kernels followed a different way when they constructed 
their respective average problems. They considered a RVE consisting of the 
filler, the shell of the matrix, and around them a third substance, having 
such properties, so that the average state of stress and strain to be closer 
to the real situation in the composite. The differences between these two 
models are related to the different properties holding in this third phase. 

Indeed, Van der Poel has considered two spheres of the same radius R 
(R  > > 1). The substance of one sphere had the effective properties of the 
composite, whereas the substance of the second sphere had also the effective 
properties of the composite, except in a small concentric spherical inclusion 
of radius equal to unity, which consisted of a sphere of radius a (a < 1) 
with the properties of the filler and a spherical shell with the properties 
of the matrix. 

For the evaluation of a property of the particulate Van der Poel consid- 
ered as acting the same external forces on the external spherical surfaces 
of both spheres. He solved completely the problem of the first sphere and 
then determined the respective property by using the solution of the second 
problem with the help of the following conditions: 

(i) Same displacements at the external surface of the two spheres 
( r  = R).  

(ii) Continuity of stresses and displacements at the interfaces of radii 
F = a and r = 1. 

On the other hand, Kerner5 has placed an intermediate layer between 
the shell of the matrix and the composite, having properties changing con- 
tinuously from those of the matrix to those of the composite. This change 
of properties, as well as the volume where this transition takes place were 
unknown. To avoid arbitrary assumptions about the mode of variation of 
these properties and the extent of this inhomogeneous layer, Kerner has 
considered average behaviors of the materials of the filler, the matrix, and 
the composite. From this description it is obvious that, in this model, a 
continuity of stresses and displacements is assured between the shell of the 
matrix and the external layer of the model. Then, it may be concluded that 
Kerner’s model is closer to the real situation in a composite, since the 
microstructure of the composite material cannot be ignored at the vicinity 
of the inclusion. 

It should be also mentioned that, in spite of the differences existing 
between the models of Hashin, Van der Poel, and Kerner, all these models 
yield the same expression for the effective bulk modulus of the composite. 
Since the determination of the thermal expansion coefficient is closely re- 
lated to the evaluation of the bulk modulus, it is expected that all the above 
models yield also the same expression for the thermal expansion coefficient 
of the particulate. 
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On the other hand, all the above-sketched models assume perfect math- 
ematical surfaces for their interfaces, as well as perfect adhesion between 
the matrix and the fillers. In reality, as has already been reported in pre- 
vious articles,- around an inclusion a complex situation develops. Areas 
of imperfect bonding, permanent stresses, due to shrinkage of the polymer 
phase during the curing period, high stress gradients, stress singularities, 
due to the rough surfaces of the inclusions, voids, microcracks, etc., make 
the above conditions far away from reality. Also the interaction of the 
matrix polumer during its curing period with the surface of the solid in- 
clusion restricts the free segmental and molecular mobility of the polymeric 
matrix and thus creates a constrained layer with presumably different 
mechanical and physical properties. 

A more realistic examination of the behaviour of composite materials 
can be done by considering the mesophase as a spherical shell between the 
filler and the matrix. This is the main thought in Ref. 7, in which the 
properties and the extent of mesophase are calculated by the respective 
properties of the filler, the matrix, and the composite, as well as by their 
volume fractions. In this article the mesophase was considered homoge- 
neous. 

The consideration of the mesophase layer is also used in Ref. 9, where 
the thermoelastic behavior of this layer is investigated. The experimental 
data, which were used in the last two articles, were obtained by an exper- 
imental procedure, which is described in Ref. 10. 

As the mesophase accommodates the differences between the properties 
of the matrix and the filler, it is obvious that the average properties of 
mesophase are somewhere in-between those of the matrix and those of the 
filler. Also, as the mesophase is created mainly by the macromolecules of 
the matrix polymer for hard-core composites, it is expected that the average 
properties of mesophase are closer to those of matrix. 

The satisfaction of the above ideas and the accommodation of the different 
properties of the inclusions and the matrix may be succeeded by a contin- 
uous change of the properties of the mesophase from those of the filler to 
those of the matrix. This idea was developed in Ref. 8, where an approxi- 
mation was introduced assuming that the mesophase is extended to infinity, 
penetrating into the matrix. Moreover, in some layers of the mesophase its 
properties were not lying always between their bounds of the filler and the 
matrix. All these approximations and disadvantages were corrected by the 
construction of the three-term and two-term unfolding models,6J1 the second 
being more simple and presumably more stable. 

In this paper a model, suitable for the determination of the cubic thermal 
expansion coefficient of a particulate, will be presented by considering as 
known the properties of matrix, filler, and mesophase. The model is based 
on the conceptions of Kerner’s model and the properties and the extent of 
mesophase are calculated by using the two-term unfolding model. 

THE MODEL FOR THE THERMAL EXPANSION COEFFICIENT 
OF PARTICULATES 

For the determination of the cubic thermal expansion coefficient of a 
particulate an average problem was constructed, whose solution describes 
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the average state of stress and strain, around and inside an inclusion. The 
model used is an extension of Kerner’s model, and it is presented analyt- 
ically here. 

In the following, subscripts f;i,rn, and c correspond to filler, mesophase, 
matrix, and composite material, respectively. The model is presented in 
Figure 1. At  first, there is a sphere of radius r = r f ,  made of substance 
with the properties of the dispersed phase. This inclusion is surrounded by 
a spherical shell, being extended from r = rf to r = r,, with the variable 
properties of the mesophase. A second spherical shell extending from r = 
r, to r = r,, enveloping the previous layers, consists of a material with the 
properties of the matrix. The sizes of radii rf, r,, and r, are compatible with 
the average volume fractions of each phase in the composite. In this model, 
the volume fraction of the mesophase is assumed as known, and it will be 
evaluated in the next paragraph. 

Sufficiently far beyond the matrix layer it is the average medium, but, 
in between, there is an intermediate zone having properties changing con- 
tinuously from those of the matrix to the effective properties of the com- 
posite. 

In this model all the materials are considered elastic, homogeneous, and 
isotropic, except the mesophase and the intermediate zone, .which are in- 
homogeneous, because of their continuously changing properties with the 
radial distance. But, for the evaluation of the thermal expansion coefficient, 
the mesophase may be initially assumed as homogeneous having its average 
properties, which will be determined by applying the two-term unfolding 
model. 

For the evaluation of the thermal expansion coefficient yc of the com- 
posite, a uniform heating of all phases is assumed raising the temperature 
of the RVE T degrees above the temperature, where the material is con- 
sidered as released from any stress. Because of the existing spherical sym- 
metry in the model, we may use spherical coordinates for the solution of 

Fig. 1. Kerner’s model extended by the introduction of the mesophase. 
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the problem. It is obvious that there are only normal components of stresses 
and radial displacements expressed in the following forms12J3: 

1 
3 

u = - y T r  + Ar + B r 2  ( 1 )  

u, = 3KA - 4 G B r 3  

ua4 = u,, = 3KA + 2 G B r 3  

where A and B are integration constants. 

spherical inclusion. So, it is easy to derive that 
Because of symmetry the displacements are zero at the center of the 

B f =  0 (4 )  

The dilatation of a phase takes the following value: 

AV au U 

V ar r + 2- = y T +  3A _ _  - e = E ,  + E,, + = - 

- = e = = + y T  AV P 
V K 

so that it is valid that 

p = 3AK (7) 

where p is hydrostatic pressure on the phase considered. 
As mentioned above, no external force is acting on the composite. There- 

fore, the hydrostatic pressure far away from the inclusion, where the stress- 
es are eliminated, must be equal to zero. Then, it is valid that 

pc = 3A,Kc = 0 (8) 

and 

A,  = 0 (9) 

Considering now the above equation, it is easy to observe that everywhere 
in the composite material the hydrostatic pressure is zero. 

The state of stresses and displacements is described by the following 
equations: 

1 

1 
3 [uIi = - yiTr + Air + B i r 2  (11)  

1 
3 [u], = - ymTr + A,r + B , r 2  Cl2) 
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1 
3 [u] ,  = - y C B  + BT-' 

[ a r r l f =  3 4 4  

[ ~ , ] i  = 3KiAi - 4Gi B i r 3  

(13) 

(14) 

(15) 

[a,], = 3K,A, - 4G, B,r3 (16) 

[(T,] ,  = - ~ G , B T - ~  (17) 

[ c + S S l f  = [(+Wlf = 3KfAf (18) 

(19) 

(20) 

(21) 

[ u ~ ~ ] ~  = [(+,Ii = 3KiAi + 2G$lir-3 

[u+$], = [(T~~], = 3KmA, + 2Gm B m r 3  

[(T.941c = [(T,,], = 2GCBLr3 

Since stresses and displacements must be continuous at the two interfaces, 
between inclusion and mesophase, and also between mesophase and matrix, 
the following boundary conditions are valid: 

Stresses and displacements are also continuous at the spherical surface 
of radius r, because of the assumed continuous mode of variation of the 
properties in the intermediate zone. Because of the unknown way that these 
properties change, as well as because of the unknown extent of the inter- 
mediate zone, it is necessary to consider the average behavior of the com- 
ponent materials. Then, the dilatation of the particulate must be the sum 
of the dilatations of the component materials multiplied each one by its 
respective volume fraction. Then, we have the following relation: 

or 

where uj = V,/ V, and Zjuj = 1 ( j  = fii,m). 
For any plane surface drawn in the composite it is valid that the mean 

normal force across it, is the sum of the mean normal forces across its parts, 
which lie in the inclusion, the mesophase and the matrix. Then, we have 
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where Sj is the surface of a component material, or 

where 

uj = y/vc = Sj/S, (29') 

This last expression for the volume fraction vj is correct, because the 
inclusions are uniformly dispersed in the composite and their size is too 
small compared with that of the composite. 

The mean values introduced by eqs. (27) and (29) are those which can be 
determined by solving the average problem, described above. 

Using eqs. (22)-(25), as well as (27) and (29) after some algebra, we may 
obtain the following relationship for the thermal expansion coefficient yc 
of the composite: 

where 

(31) 
4 4 

P - -GiOll - - (G,  - Gi)K,v,BOI2 + K,vfO13 ' - 3  3 

4 4 4 
3 3 Pi = --G,Oll - ~G,K,~,012 + -(G, - Gi)K,~,B012 + Kmui0la (32) 

(33) 
4 
3 P, = -G,K,v,Ol2 + Kmu,013 

Supposing now that G, = Gi and K ,  = Ki or Gf = Gi and K, = Ki, 
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Kerner’s equation for the thermal expansion coefficient of the composite 
may be derived. This was expected because, by assuming these equalities 
valid, the mesophase is annulled. 

Also, by using the equations uf = 0, ui + urn = 1, Krn = K,, and G, = Gi 
or u, = 0, uf + u, = 1, K f  = K,, and Gf = Gi in the relation (301, we may 
find the following values for the thermal expansion coefficient of the com- 
posite respectively: 

and 

Y c  = Yf  

THE EXTENT AND THE AVERAGE BULK- AND ELASTIC- 
MODULI AND THE THERMAL EXPANSION COEFFICIENT OF 

THE MESOPHASE 

Mesophase, in our model, accommodates the differences, which exist be- 
tween the properties of the filler and the matrix. In all other models the 
accommodation of the above differences is succeeded abruptly by supposing 
only that the stresses and the displacements are continuous at ideally 
smooth and mathematically described interfaces. This assumption, however, 
is far from reality. In actual particulates the smoothing of differences is 
always obtained by an intermediate zone, which has continuously varying 
properties, as is assumed by the mesophase in our model. This is the reason 
why Kerner’s model may be considered more satisfactory than any similar 
model, because in Kerner’s model the differences between the matrix and 
the composite are accommodated, by introducing the intermediate zone 
between them, imitating nature by this zone. 

The variation of the properties of the mesophase satisfies the following 
conditions: 

(i) The properties of the mesophase must be identical with those of the 
inclusion at  the spherical surface of radius r = rp 

(ii) The properties of the mesophase must be identical with those of the 
matrix at the interface between mesophase and matrix. 

The mesophase is assumed to be created by the macromolecules of the 
matrix during the preparation of the composite material, and has small 
thickness for a good quality of adhesion of the composite. Because of the 
above considerations we may introduce two more boundary conditions: 

(iii) The tangent of the curve, which represents the change of a property 
in the mesophase, at the interface r = r, must coincide with the line cor- 
responding to the constant value of the respective property of matrix and 
so satisfying the tangent continuity assumption between mesophase and 
matrix.14 This condition is a result of the composition of the mesophase. 

(iv) The curve must be steep, but always smooth. This condition is a result 
of the composition and the thickness of the mesophase. 

The two models, that were developed in Ref. 11 satisfy rigorously the 
conditions (i), (ii), and (iv), whereas the satisfaction of the third condition 
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is achieved by a suitable choice of the parameters, expressing the variation 
of the properties of the mesophase. The two-term unfolding rnodelll will 
not be extended to satisfy rigorously the third also condition for the case 
of the elasticI4 and bulk moduli and the thermal expansion coefficient. 

Because of the radial symmetry, which holds in the problem, it is obvious 
that all the properties of the mesophase depend only on the distance from 
the center of the inclusion, r. 

The mode of variation of the elastic modulus in the mesophase was pre- 
sented in Refs. 6 and 11 by the following expression: 

Conditions (i) and (ii) are automatically satisfied. The third condition is 
satisfied by the next equation: 

which is derived by zeroing the derivative of E,(r) at r = ri. Subscript E 
denotes that the exponent 2q corresponds to the elastic modulus. 

The average elastic modulus of the mesophase Ei, which is indispensable 
for the determination of r,, as will be presented below, may be determined 
by integrating from r = rf to r = ri. So we have 

1 r' 
Eiui = - Ei(r)[(r + dr)3 - r3] 

13, rf 
(47) 

or 

x (1 + B-l13 + B-2/3 - 3B- 9 

Since the bulk modulus of the mesophase has an analogous mode of vari- 
ation as the elastic modulus, it is obvious that, in this case, expressions 
similar to (45), (461, and (48) will hold. Then, we have 

x (1 + B-lJ3 + B-2/3 - 3B- 9 

where Ki is the average bulk modulus of the mesophase. Subscript b denotes 
that the exponent 2q corresponds to the bulk modulus. 
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The bulk modulus of a particulate was,determined in Ref. 11, by using 
the properties of the filler, the mesophase, and the matrix, and the following 
relations were found: 

where 

The precise value of Aim can be found by the relation (54) while the 
respective one presented in Ref. 11 may be derived from (54) by considering 
u: = 0. This last consideration is avoided in this paper because the value 
of u, is not always small enough. 

The values of vi and Gi in eqs. (52H54) can be found easily by the well- 
known relations: 

3Ki - Ei v .  = 
6Kl 

Ei 
2(1 + W i )  

G, = 

Relations (46), (48), (50), (51), and (52) form a syst-m of five equ 

(55) 

(56) 

tions 
with five unknowns, that is, the quantities, El, 2qE, K,, 2qb, r,, which can 
be found by solving the above system. The value of the bulk modulus of 
the particulate, KO is considered as known and can be found by experiments. 
It is important to say that the experimental value of K, is necessary for 
the evaluation of r,, because the extent of the mesophase greatly depends 
on the procedure of the preparation of the composite. We also must note 
that anly the value of Kc is necessary and not of the elastic modulus E, 
because we don’t have any expression for the elastic modulus of the com- 
posite, or for its Poisson’s ratio. 

The elastic modulus varies in the mesophase from a value Ef to a smaller 
one Em, when the radius r is increased. But, in the case of the thermal 
expansion coefficient, y l ( r )  is increased from y r  to y m  with the distance from 
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the interface between the inclusion and the mesophase. This difference 
makes it necessary to adapt the form of relation (45): 

where 

r - rf 
rf 

r =  
ri - rf 

rf 
ri = 

(58) 

(59) 

Conditions 6) and (ii) are automatically satisfied. The third condition in 
this case it is obtained by the following relations: 

where the subscript T denotes that the exponent 27 corresponds to the 
thermal expandon coefficient. 

The quantity y ,  in relation (301 expresses the average value of the thermal 
expansion coefficient of the mesophase and is given by 

or 

The calculation of the values of 2qT and y i  is succeeded by the solution 
of the system of eqs. (60) and (62). 

The three exponents 2r)n 2776, and 2 q ~  express the quality of adhesion 
between matrix and filler. Large absolute values of the exponents express 
good quality of the adhesion, while a decrease of their values corresponds 
to a deterioration of the quality of the adhesion. 

The value of ri can also be calculated by solving the system of the eqs. 
(301, (60), (621, (461, (481, GO), and (511, considering the value of yc as given 
by experimental data. The two values of ri, which can be calculated by 
assuming the values of Kc or yc as known, respectively, must be the same. 

APPLICATION AND DISCUSSION 
As already noted, the knowledge of experimental data for the bulk mod- 

ulus of the composite is indispensable for the calculation of the extent of 
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the mesophase, by using the elastic properties of the composite material. 
This is the reason why the experimental results of van der Wal, Bree, and 
Schwarzl15 were used for the investigation of the behavior of our model. 
The composite material, which was examined by the above-mentioned sci- 
entists, was polyurethane rubber, filled with particles of sodium chloride. 
The elastic and thermoelastic properties of these materials at 20°C are 
presented in Table I. The experimental values of the volume expansivity, 
yo and of the bulk modulus, K,  of the particulate are presented in the 
thired columns of the Tables I1 and 111, respectively, and they were measured 
by using specimens containing inclusions having a size of 90-105 pm. 

The size of the inclusion surrounded by the mesophase, corresponding to 
the quantity d,, was calculated by assuming the experimental value, at first, 
of the thermal expansion coefficient, and secondly of the bulk modulus of 
the composite as known. Subscripts T and b were used respectively to dis- 
tinguish the two values of d, that were calculated by the above-mentioned 
methods. The results, which are presented in the fifth columns of the Tables 
I1 and 111, were calculated by assuming that the average particle size is 
equal to 98 pm. The differences between the values of dlT and dlb, presented 
in the last column of the Table 11, are small. The greatest difference, as we 
can see, is equal to 6.12%, while the average difference for all the other 
cases is equal to 2.5%. 

All the above remarks permit to predict the value of the thermal expan- 
sion coefficient of the particulate. We can consider that the extent of the 
mesophase is calculated by using the experimental value of the bulk mod- 
ulus of the composite and follow the inverse way for the case of the volume 
expansivity. The calculated values of -yo as well as their discrepancies from 
the experimental ones are presented in Table 111. The greatest discrepancy 
is equal to 2.04% and corresponds to a volume fraction of sodium chloride 
equal to 0.414. 

It must be noted that when the extent of the mesophase is increased, its 
influence to the effective properties of the particulate is also increased. So, 
the mesophase extending to a volume fraction equal to 3.6%, and corre- 
sponding to a volume fraction of the filler equal to 41.4%, influences sig- 
nificantly the respective value of the thermal expansion coefficient of the 
particulate. Thus, the discrepancy of the value derived from Kerner's model, 
which ignores the existence of mesophase, is the double of the discrepancy 
derived from the mesophase model for this type of composite. 

The average properties of the mesophase, as well as the three exponents, 

TABLE I 
Elastic and Thermoelastic Properties of Polyurethane Rubber and Sodium-Chloride at 20°C 

Volume Shear Elastic Bulk 
expansivity modulus G modulus E modulus K Poisson's 

Material y (lo-' "C-1) (N m-2) (N m-2) (N m-2) ratio v 

Sodium chle 1.134 1.28 x 1O1O 4.43 x 1O1O 2.53 x lolo 0.208 

Polyurethane 7.23 1.32 x 106 3.96 x 106 1.97 x 109 0.500 
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Fig. 2. The variation of the elastic modulus of the mesophase vs. the polar distance r from 
the center of the inclusion. 

that is the quantities 2qT, 2qb, and 2qn are presented in Tables I1 and 111. 
Upper and lower bounds, for all calculated quantities, are presented in 
these tables because of the accuracy of the experimental results. 

It is observed that the absolute values of the exponents decrease when 
the volume fraction of the mesophase increases, that is, when the adhesion 
becomes less and less effective. 

The mode of variation of the elastic and bulk moduli and of the thermal 
expansion coefficient of the mesophase is plotted in Figures 2, 3, and 4, 
respectively, for the case where the volume fraction of the filler is equal 
to 0.414. A steep, but smooth, transition from the properties of the inclusion 
to those of the matrix is derived from this model. 

CONCLUSIONS 

The two-term unfolding model, which describes the mode of variation of 
the elastic modulus in the mesophase, was extended for the case of the bulk 
modulus, as well as of the thermal expansion coefficient of the mesophase. 
This model describes the accommodation of the differences between the 
properties of the inclusion and the matrix by a more realistic way than the 
previous models. These models considered a continuity of stresses and dis- 
placements at the interface, between the matrix and the inclusion, which 
is also supposed as a perfect, and mathematically described surface. 

The assumption of the tangent continuity at the interface between the 
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Fig. 3. The variation 
the center of the inclusion. 

49 49.5 50 50 6 
rx106, - 

of the bulk modulus of the mesophase vs. the polar distance r from of the bulk modulus of the mesophase vs. the polar distance r from 

5 

Fig. 4. The variation of the thermal expansion coefficient of the mesophase vs. the polar 
distance r from the center of the inclusion. 
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mesophase and the matrix improved the two-term unfolding model and 
added one more condition, which makes possible the determination of the 
extent of the mesophase by using the experimental value of the bulk mod- 
ulus of the composite. 

Then, an accurate prediction of the thermal expansion coefficient of the 
particulate is possible, with small discrepancies from the experimental val- 
ues, by using the calculated value of ri and the model for the volume ex- 
pansivity, which was described in detail in this paper. This model, based 
on Kerner’s model, presents a more satisfactory behaviour than all previous 
models, because of the introduction of the mesopause, which takes into 
account the quality of the adhesion. This mesophase, although of a small 
extent, exerts a great influence on the properties of the composite. 
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